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representation in the soliton theory of Heisenberg chains 
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Institute of Physics, Faculty of Sciences, 21000 Novi Sad, Yugoslavia 
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Abstract. Soliton excitations in the anisotropic Heisenberg chain are studied in the classical 
limit by means of the Holstein-Primakoff boson representation, taking into account the 
complete series. The results obtained are equivalent to those obtained by the classical 
treatment of spins. The connection with different calculations using limited numbers of 
terms is established, as well as the relation to the generalised coherent-states method. 

1. Introduction 

Bosonic representations of the spin operators turn out to be a very suitable method for 
studying the solitary waves in magnetic systems, since they allow one to include quantum 
corrections in a systematic way. Prior to the study of quantum effects, one has to establish 
the strict correspondence between the classical solutions (solutions obtained by the 
treatment of spins as classical vectors) and the solutions obtained by means of boson 
representations. (For the spin coherent-state representation, such a correspondence 
was established by Balakrishnan and Bishop (1985).) 

The boson representation particularly suitable for this approach is the Holstein- 
Primakoff (HP) (1940) representation. The pioneering work of Pushkarov and Pushkarov 
(1977) on this subject sufferedfrom a highly inconsistent comparison of the terms (which 
in fact were of the same order of magnitude), so that the first consistent study of 
the solitons in the isotropic Heisenberg ferromagnet within the framework of the HP 
representation was performed by de Azevedo et a1 (1982). Following their work, we 
have extended the same approach to the anisotropic Heisenberg model (Skrinjar et a1 
1987). In fact, in both cases a limited number of terms in the Bose operators were kept 
(a ‘truncated’ representation); so one has to consider the terms whose contributions 
were not included. 

The aim of this paper is to show that the inclusion of the whole series leads in the 
classical limit strictly to the classical results and enables one to establish clearly the scope 
of the quantum corrections, whose explicit calculation is postponed until a subsequent 
paper. 

The structure of the paper is as follows: we introduce the Hamiltonian in 9 2, and 
express it in terms of the HP representation using Glauber’s coherent-state representation 
to evaluate the classical limit. The equations of motion are derived in § 3, while soliton 
characteristics are calculated for some particular cases in § 4, where a comparison 
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with other results is performed. The problem of the connection between Glauber's 
representation and the spin coherent states initiated in the pioneering work of Radcliffe 
(1971) is discussed in the Appendix within the framework of the present results. 

2. The Hamiltonian of the system 

We shall study the anisotropic Heisenberg chain in an external fieldf, whose Hamiltonian 
can be put into the form 

Here SI denotes the spin of the jth ion, J is the exchange integral, z is the anisotropy 
parameter, ,U is the magnetic moment and a is the lattice constant. 

Let us introduce the HP representation: 

Sf = S - B:B, (2a)  

s, = (S;)+ 

S; = [2S( 1 - B: B,/2S)]"2 B,. 

B,, B: are Bose operators satisfying 

[B ,  3 41 = 0 [ B , ,  B:I = 6,. 
We shall now take a closer look at the square root: 

The application of the coherent states demands the operator expression to be put 
into the form of a normal ordered product. Simple manipulation shows that one always 
has 

(B,?B,)K = B:"B," 4- aK- IB:K- 'BK- l  I + . . . + a 2  B:'B; + B: B, ( 3 )  

where a, are coefficients that can be determined. This implies that any term of the type 
B+KBK/SK also has a correction arising from normal ordering of higher terms in the Bose 
operators, but with a coefficient at least of order l/SK'', or smaller. Such terms can be 
neglected in the classical limit (S+  x); so we have 

We still have to prove that the only remaining terms are those that we kept in the above 
expression. 

This will be shown in the next step, which is the averaging of the Hamiltonian (1) 
over boson coherent states laj) (Glauber 1963): 

N 

la) = Il Iaj). (4) 
1=1 
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Looking at the expression for S" 

(alsfla) = s - ( a , I ~ p l a , )  = s - laJ2 

where the aj-values are coherent amplitudes (Bla) = ala)) and comparing it with the 
classical expression 

s z  = s cos e 
we note the correspondence 

I L ~ / / *  = s(1 - COS e). 
We see that lal12 diverges for S+ E, but the quantity 

k, = aJV3 
remains finite, and we shall use it in the future. 

Next, we calculate 

This enables us to write down the complete Hamiltonian. 
Since our aim is to study the classical limit S+ w,  h+ 0, we have to write the 

Hamiltonian in the correct dimensional form. Until now, we have used the system 
h = 1 in order to simplify bosonic representation. For this reason, we shall treat spin 
operators as dimensionless and introduce the necessary factors of h (Jauslin and 
Schneider 1982, Jauslin 1982). This procedure gives 

We introduce the classical quantities 

Sc = lim(hS) 
h-, 0 

P = PSC 

.f= JSZ 
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x + &; &j+l) - (1 + t ) . f X  (~&j121&,+l12 - 21&j12). (10) 
i 

The next step is to perform the continuum limit: &,+ &(x, t ) ,  &ji-l + cE(x k a, l ) ,  Xi-+ 
(l/a)Jdx. We shall expand all quantities up to a2.  In this way, we obtain the following 
Hamiltonian density: 

(alA - Ho/a)  = - X dx  (11a) 

x = h214z - 4 4 4  + j a 2 1 & x ~ 2  + i.ra2(&2&;2 + ~ 2 & : )  + +Ju*[l&12/(1 - i l & l 2 ) 1  

x (21&,12/&12 + &2&:2 + &*2&?) + ttj,2[(a/ax)l&~2]2 

U 'I 
( I lb)  

with h2 = pf + 2z.f. Here &stands for &(x, t )  and the subscript denotes the corresponding 
partial derivative. This expression was obtained under the assumption of cyclic boundary 
conditions and the condition 

lcEl;("t.) = l&I;x(*t.) = . . . = 0. 

3. Equations of motion 

The usual treatment accepts 3T as the density of the classical Hamiltonian and treats & 
and &* as the pair of conjugated canonical variables. In this case, one writes down the 
Hamiltonian equation of motion (with the classical transition included) as 

is,(a&/at) = aX/a&* - (a/ax)(aX/a&;). (12) 
Partial integrations performed in order to obtain X in the form ( l lb)  help us now to 

avoid higher derivatives in (12). The resulting expression is 

is,&, = -h2& - 2tJl&12& - . fa2&, - B.f~~(2&i./&,1~ + i&2&,x - +&*&f) 

- &.fa2{&(1q:)/(l - 6/&12)2 + [21&/2&/(1 - 61&/')]~&1f,} 

- tJa2(2&I&,12 + &%,, + /&12&,,). (13) 
Now we can introduce the usual substitution 

&(x, t )  = A(x, t )  exp[iq(x, t )  + iQt] (1 4) 
with A and cp real functions. 

results. First of all, let us look at the imaginary part of the equation: 
Separating the real and imaginary parts of (13), we can obtain several important 

-S,A, =.fa2(-2A,q7, - Aq,, + 2A2cp7, + iA3qXx).  (15) 
It is very important to note that there are no contributions from the anisotropic 

interaction (no terms proportional to t) in (15). This means that all the consequences of 
this equation are valid in both the isotropic and the anisotropic case. 

Further, we can see that the only terms which contribute to (15) are those of order 
pi4, so that equations of this type obtained in calculations with up to four Bose operator 
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terms are correct. 

(-,Scqt - S , Q ) A  = h 2 A  - 2 d A 3  - Ju2A,  + j a 2 A q :  + j a 2 A 3 q Z  

The real part of the equation gives 

- &Ja2( l  + 4 5 ) ( A A :  - A2A,,) - i a 2 [ ( 4 A 3 A :  + 2A4A, ) / ( l  - ;A2) 

+ A5A:/(l  - $A2)’]. (16)  
We shall look for the solitary solution of the form 

A ( x ,  t )  = A(x  - U f )  Y (X ,  f> = q v  - U t )  x - Ut= E (17)  

where U is the soliton velocity. 
The boundary conditions now become 

A ( + m )  = A g ( k ~ )  =AEg(Lx) = .  . . = O .  

Multiplying (15)  by A ,  one can integrate it to obtain 

~ p g  = ( V / 2 ) [ 1 / ( 1  - 4A2)] 

where 

v = S,u/Ja2. 

Substituting (17 )  into (16 ) ,  and multiplying the equation by A:, we obtain 

(d/dQ[&4$ + t(l + 4z)A25A2 + iAtA4/(l  - ;A2) + ( V 2 / 4 ) [ ( 1  - $A2)]-* 

- y o A 2  - ( t / a 2 ) A 2  + ( z / 2 a 2 ) A 4 ]  = 0 (20)  
with 

y o  = (S,Q + p f ) / J a 2 .  

Integrating this, and applying boundary conditions to determine the integration 
constant, we arrive at 

A i [ 1  + 2 z A 2 ( 1  - ;A2)] = y o A 2 [ 1  + 25 /a2y ,  - V 2 / 4 y 0  

- ( A / 2 ) ( 1  + 45 /y ,a2 )  + ( s /2you2)A4] .  

u2 = ( 1  - cos 8 ) / 2  = sin2 @ 

(22)  

(23) 

Following Tjon and Wright (1977),  we introduce a new variable 

to obtain 

cos2 P@(I + 45 sin2 @ cos2 13) = y o  sin2 p[cos2 @ + ( 2 z / y 0 a 2 )  cos4 @ - V 2 / 4 y o ] .  
(24)  

This equation was previously derived by Tjon and Wright (1977) in a completely 
classical treatment and by us (Kapor et a1 1986) using a semi-classical approach. 

4. Discussion of results 

Let us first discuss our result for the isotropic chain (z = 0). We obtain 

This expression, of course, agrees with the results of Tjon and Wright, but it is more 
A i  = y o A 2 ( 1  - V 2 / 4 y o  - A 2 / 2 ) .  (25)  
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interesting to note that it also agrees with the result of de Azevedo et a1 (1982). 
They obtained it by expanding the HP representation up to the terms with four Bose 
operators, under the assumption that coherent amplitudes satisfy the condition 
lims+,[(I/2S)lcu12] +. 0. 

In fact, this quantity remains finite, since it becomes 

(1/2S)142 = t/nl2 = (1 - cos 8)/2 

in the classical limit; so it satisfies only a weaker condition tl&I2 s 1, which is sufficient 
to ensure the convergence of the series, neglecting terms of order (l/S)l&I* but not the 
above-mentioned condition of de Azevedo et a1 (1982). 

The reason that their result agrees with the correct expression is because, for z = 0, 
all terms of order higher than k4(A4) exactly cancel in (8). This is why the result obtained 
by this ‘truncated’ expansion turns out to be correct. 

Single-soliton solutions and the system energy can be expressed in terms of the 
magnetisation and momentum of the system, following Tjon and Wright (1977): 

S,(1 -CosO)dx=-  A’dx 
a sc a I 

The single-soliton solution is 

A 2  = 2 ~ ~ / ~ 0 ~ h [ ( 2 / r ) ( ~  - ut)] 

with the amplitude 

qi = sin(Pa/4Sc) 

and the soliton dimension 

l- = (Ma/2Sc)(l/cp2,). 

The soliton energy is 

E = ,uMh + (16Sc.f/M) sin(Pa/4Sc) 

and it satisfies the important relation 

U = aE/aP = (4 . fa /M)  sin(Pa/4Sc). (32) 

Now let us look at the case of the weak anisotropy (t < 1). Equation (22) can be 
linearised in t: 

A i  = [ ( y o  + 2 t / a 2  - V2/4)A2 - ( t y o  + 2t/a2)A4 + (t/2a2)A6] 

X [ l  + 2zA2(1 - U 2 ) ] - l  

= ( y o  + 2 t / a 2  - V2/4)A2 - [ ( $ y o  + 2z/a2)A4 - (z/2a2)A6] 

x [l + O(z)] + O(zZAs) 

= [ y o  + 2 t / a 2  - (V2/4)A2] - (+yo + 2t/a2)A4 + (t/2a2)A6. (33) 

This result agrees with our previous result (Skrinjar et a1 1987) (except that in our 
previous paper z appears instead z /a2 ;  this is corrected here). Once again, we have 
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arrived at the correct result with ‘truncated’ representation owing to exact cancelling of 
higher-order terms. 

Still, it was important to perform here the complete study, because it was the only 
way to separate all classical solutions from the quantum corrections which will be studied 
in a subsequent paper. 

Finally, we wish to note that equation (23) indicates in fact that Glauber’s coherent 
states applied to the HP representation of spin operators along classical lines is completely 
equivalent to the application of the generalised (spin) coherent states (Perelomov 1985). 
We shall discuss this in more detail in the Appendix, but it is important to note here that 
this conclusion differs substantially from the conclusion of Makhankov et a1 (1987) and 
Makhankov and Makhankov (1988) who claim that the two approaches led to different 
equations in the continuum limit. Their conclusion is due to the truncation of the HP 
series and an incorrect continuum transition, because there is no way for the term of 
order / @ I 6  to appear in their calculation. 

Appendix. Connection between Glauber’s representation and generalised (spin) coherent 
states 

In our approach (for S -+ x), we have 

(alS; /a) = VDVl - &%I*&, 
and since 

k, -+ A exp(icp + iQt) = A exp(iq5,) 

and 

$A2 = f(1 - COS 8 )  

we have 

( ( U ~ S : I L Y ) - +  VTsVi - sin2(e,/2)V/Zsin(8,/2) exp(iG,) = Ssin e, exp(i4,). 

In the same way, 

(alS; la) -+ S sin 8 exp( -i@) 

and 

(EIS; la) = s - 1&,12 + s ( i  - ~ 2 )  = s cos e. 
These average values are the same as those obtained by the application of the 

generalised coherent states (Perelomov 1985). This means that all equations which 
follow after averaging are the same, of course. 

This implies that consequent application of the HP representation and Glauber’s 
coherent states should lead precisely to the same results in the limit S-+ x as the 
application of generalised coherent states. 
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